Resonances of Line Solitons in a Non-isospectral Kadomtsev–Petviashvili Equation

Hong-Hai HAO* and Da-Jun ZHANG

Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China
(Received January 26, 2008; accepted March 4, 2008; published April 10, 2008)

KEYWORDS: non-isospectral Kadomtsev–Petviashvili equation, Hirota’s method, line soliton resonance
DOI: 10.1143/JPSJ.77.045001

It is well known that the Kadomtsev–Petviashvili (KP) equation provides line solitons in shallow water and these solitons can be of resonance.1,2 Recently, a non-isospectral KP equation was investigated.3 This equation reads

\[4u_t + y(tu_{xxx} + 6uu_x + 3\alpha^{-1}u_y) + 2xu_y + 4\alpha^{-1}u_y = 0, \]

(1)

which is integrable with the Lax pair

\[\begin{align*}
\phi_t &= \phi_{xx} + 2\alpha \phi, \\
\phi_x &= y \left[\phi_{xxx} + 3\alpha \phi_x + \frac{3}{2} (\alpha^{-1} u_x + u_y) \right] + \frac{1}{2} x (\phi_{xx} + 2\alpha \phi) + \frac{1}{2} (\alpha^{-1} u) \phi.
\end{align*} \]

(2a)

(2b)

By the dependent variable transformation

\[u = 2(\ln P)_{xx}, \]

(3)

eq (1) admits a bilinear form3

\[4D_t D_y f \cdot f + y(D_x^3 f \cdot f + 3D_x^2 f \cdot f) + 2xD_t D_y f \cdot f + 4ff_x = 0, \]

(4)

which has been solved by3

\[f = \sum_{\mu=0,1} \exp \left(\sum_{j=1}^{N} \mu_j \theta_j + \sum_{1 \leq j l} \mu_j \mu_l A_{jl} \right), \]

(5a)

with

\[\begin{align*}
\theta_1 &= K_1(t)[x + P_1(t)y] + \theta_1^{(0)}, \\
K_{ij}(t) &= -\frac{1}{2} K_i(t) P_j(t), \\
P_{ij}(t) &= -\frac{1}{4} K_i^2(t) - \frac{1}{4} P_j^2(t), \\
K_f(t) &= \frac{8c_i}{4c_j - t^2}, \\
P_f(t) &= \frac{-4t}{4c_j - t^2}, \\
e^{ix} &= \left[\frac{|K_f(t) - K_i(t)|^2}{|K_f(t) + K_i(t)|^2} - \frac{|P_f(t) - P_i(t)|^2}{|P_f(t) + P_i(t)|^2} \right],
\end{align*} \]

(5b)

(5c)

(5d)

(5e)

where \(\theta_1^{(0)} \) and \(c_i \) are all real constants, the sum over \(\mu = 0, 1 \) refers to each of \(\mu_j = 0, 1 (j = 1, 2, \ldots, N) \). In eq. (4), \(D \) is the Hirota’s bilinear operator4 defined as

\[D_x^m D_y^n f \cdot g = (\partial_x - \partial_y)^m (\partial_x - \partial_y)^n f(t, x) g(t, x)' \big|_{x=t, x'=t}. \]

(6)

In our short note, beyond (5c) we give the following new solutions to (5c),

\[K_f(t) = \frac{2}{t - 2c_j} - \frac{2}{t + 2d_i}, \]

(7a)

\[P_f(t) = \frac{2}{t - 2c_j} + \frac{2}{t + 2d_i}, \]

(7b)

and in the light of this, \(e^{ix} \) simply is

\[e^{ix} = \left(\frac{c_j - c_i}{d_j - d_i} \right)^{d_j + d_i}. \]

(7c)

where \(c_j \) and \(d_i \) are all real constants. Thus, a more general solution to (4) can be given by (5a) and (5b) with (7a) and (7b).

The resonance of line solitons will appear when \(e^{ix} = 0 \) in non-degenerate multi-soliton case. Let us consider a 2-soliton solution which is described through

\[f = 1 + e^{ix} + e^{ix}. \]

(8)

Now let us investigate the asymptotic behaviors of such two solitons by means of asymptotic approach as did in ref. 2.

We consider the following three cases. First, when

\[t < 2c_1 \quad \text{or} \quad t > 2c_2, \]

(10)

we introduce the coordinate frame \([X = x + P_1(t)y, y]\) and under which we have

\[\theta_1 = K_1(t)X + \theta_1^{(0)}, \]

\[\theta_2 = K_2(t)X + K_2(t)P_2(t) - P_1(t)y + \theta_2^{(0)}. \]

The condition (10) guarantees \(K_2(t)[P_2(t) - P_1(t)]y + \theta_2^{(0)} \) always positive. Now letting the frame co-moves with \(\theta_1 \)-soliton, i.e., keeping \(X \) constant, we have \(\theta_2 \rightarrow \pm \infty, y \rightarrow \pm \infty \), which further suggests

\[u \rightarrow \begin{cases}
\frac{K_1(t)}{2} \text{sech}^2 \frac{\theta_1}{2}, & y \rightarrow -\infty, \\
0, & y \rightarrow +\infty.
\end{cases} \]

(11)

Similarly, in the coordinate frame \([Y = x + P_2(t)y, y]\), if \(Y \) stays constant, we have

\[u \rightarrow \begin{cases}
\frac{K_2(t)}{2} \text{sech}^2 \frac{\theta_2}{2}, & y \rightarrow -\infty, \\
0, & y \rightarrow +\infty.
\end{cases} \]

(12)

In the coordinate frame \([Z = x - [P_1(t) + P_2(t)]y, y]\), if \(Z \) stays constant,
Fig. 1. The density plots of two soliton resonances for the non-isospectral KP given by (3) with (9). (a) \(t = -5.4, c_1 = -2, c_2 = 1.6, d_1 = d_2 = 1 \);
(b) \(t = -0.2, c_1 = -2.4, c_2 = 1.8, d_1 = d_2 = 1 \); (c) \(t = -3.6, c_1 = -2.4, c_2 = 1.8, d_1 = d_2 = 1 \), where \(\theta_1^0 = \theta_2^0 = 0 \).

Let us rewrite the above asymptotic behaviors in a simple form

\[
\begin{align*}
0, & \quad y \to -\infty, \\
\frac{[K_1(t) - K_2(t)]^2}{2} \text{sech}^2 \left(\frac{\theta_1 - \theta_2}{2} \right), & \quad y \to +\infty.
\end{align*}
\]

(13)

Let us rewrite the above asymptotic behaviors in a simple form

\[
\begin{align*}
\frac{K_1(t)^2}{2} \text{sech}^2 \frac{\theta_1}{2}, & \quad y \to -\infty, \\
\frac{K_2(t)^2}{2} \text{sech}^2 \frac{\theta_2}{2}, & \quad y \to -\infty, \\
\frac{[K_1(t) - K_2(t)]^2}{2} \text{sech}^2 \left(\frac{\theta_1 - \theta_2}{2} \right), & \quad y \to +\infty.
\end{align*}
\]

(14)

For the other two cases, when \(-2d_1 < t < 2c_2\), we have

\[
\begin{align*}
\frac{K_1(t)^2}{2} \text{sech}^2 \frac{\theta_1}{2}, & \quad y \to -\infty, \\
\frac{K_2(t)^2}{2} \text{sech}^2 \frac{\theta_2}{2}, & \quad y \to +\infty, \\
\frac{[K_1(t) - K_2(t)]^2}{2} \text{sech}^2 \left(\frac{\theta_1 - \theta_2}{2} \right), & \quad y \to -\infty.
\end{align*}
\]

(15)

when \(2c_1 < t < -2d_1\), we have

\[
\begin{align*}
\frac{K_1(t)^2}{2} \text{sech}^2 \frac{\theta_1}{2}, & \quad y \to +\infty, \\
\frac{K_2(t)^2}{2} \text{sech}^2 \frac{\theta_2}{2}, & \quad y \to -\infty, \\
\frac{[K_1(t) - K_2(t)]^2}{2} \text{sech}^2 \left(\frac{\theta_1 - \theta_2}{2} \right), & \quad y \to -\infty.
\end{align*}
\]

(16)

We depict the above three cases in Fig. 1.

To sum up, we have investigated the resonance of two line solitons of the non-isospectral KP equation by asymptotic analysis. Since the amplitude and slope \((dy/dx)\) of each line soliton are time-dependent, such resonance might describe a special behavior of wave motions in some kind of non-uniform media. Meanwhile, in the light of (7a) we note that the soliton resonant solutions can become singular at a finite time and there will be a blowup at \(t = 2c_j\) or \(t = -2d_j\).

Acknowledgements

The authors would like to express their sincere thanks to the referees for their helpful suggestions and valuable comments. This work is supported by the National Natural Science Foundation of China (Nos. 10371070, 10671121), the Foundation of Shanghai Education Committee for Shanghai Prospective Excellent Young Teachers and Shanghai Leading Academic Discipline Project (No. J50101).